Search results for "Glycerol-3-phosphate dehydrogenase"

showing 6 items of 6 documents

Requirement for the Proton-Pumping NADH Dehydrogenase I of Escherichia Coli in Respiration of NADH to Fumarate and Its Bioenergetic Implications

1997

In Escherichia coli the expression of the nuo genes encoding the proton pumping NADH dehydrogenase I is stimulated by the presence of fumarate during anaerobic respiration. The regulatory sites required for the induction by fumarate, nitrate and O2 are located at positions around –309, –277, and downstream of –231 bp, respectively, relative to the transcriptional-start site. The fumarate regulator has to be different from the O2 and nitrate regulators ArcA and NarL. For growth by fumarate respiration, the presence of NADH dehydrogenase I was essential, in contrast to aerobic or nitrate respiration which used preferentially NADH dehydrogenase II. The electron transport from NADH to fumarate …

Anaerobic respirationAcetatesmedicine.disease_causeBiochemistryElectron TransportFumaratesEscherichia colimedicineDimethyl SulfoxideNADH NADPH OxidoreductasesAnaerobiosisEscherichia colichemistry.chemical_classificationElectron Transport Complex IEthanolbiologyNADH dehydrogenaseGene Expression Regulation BacterialProton PumpsElectron acceptorFumarate reductaseNADElectron transport chainGlycerol-3-phosphate dehydrogenaseBiochemistrychemistryElectron Transport Complex Ibiology.proteinEnergy MetabolismEuropean Journal of Biochemistry
researchProduct

Enhanced enzymatic activity of glycerol-3-phosphate dehydrogenase from the cryophilic Saccharomyces kudriavzevii

2014

During the evolution of the different species classified within the Saccharomyces genus, each one has adapted to live in different environments. One of the most important parameters that have influenced the evolution of Saccharomyces species is the temperature. Here we have focused on the study of the ability of certain species as Saccharomyces kudriavzevii to grow at low temperatures, in contrast to Saccharomyces cerevisiae. We observed that S. kudriavzevii strains isolated from several regions are able to synthesize higher amounts of glycerol, a molecule that has been shown to accumulate in response to freeze and cold stress. To explain this observation at the molecular level we studied t…

GlycerolApplied MicrobiologyEnzyme Metabolismlcsh:MedicineYeast and Fungal ModelsWineEthanol fermentationSaccharomycesBiochemistrychemistry.chemical_compoundMolecular cell biologyLow temperaturelcsh:ScienceCellular Stress ResponsesMultidisciplinarybiologyTemperatureEnzymesCold TemperatureBiochemistryMetabolic PathwaysOsmotic shockAlcoholic fermentationSaccharomyces kudriavzeviiResearch ArticleOsmotic shockSaccharomyces cerevisiaeDNA transcriptionGlycerolphosphate DehydrogenaseSaccharomyces cerevisiaeBiosynthesisMicrobiologyGenètica molecularSaccharomycesModel OrganismsGlycerolS. kudriavzeviiBiologyMicrobial MetabolismEnzyme Kineticslcsh:Rbiology.organism_classificationGlycerol-3-phosphate dehydrogenaseMetabolismchemistryFermentationFermentationlcsh:QGene expression
researchProduct

Enzymes for the NADPH-dependent reduction of dihydroxyacetone and D-glyceraldehyde and L-glyceraldehyde in the mould Hypocrea jecorina

2006

The mould Hypocrea jecorina (Trichoderma reesei) has two genes coding for enzymes with high similarity to the NADP-dependent glycerol dehydrogenase. These genes, called gld1 and gld2, were cloned and expressed in a heterologous host. The encoded proteins were purified and their kinetic properties characterized. GLD1 catalyses the conversion of d-glyceraldehyde and l-glyceraldehyde to glycerol, whereas GLD2 catalyses the conversion of dihydroxyacetone to glycerol. Both enzymes are specific for NADPH as a cofactor. The properties of GLD2 are similar to those of the previously described NADP-dependent glycerol-2- dehydrogenases (EC 1.1.1.156) purified from different mould species. It is a reve…

HypocreaDihydroxyacetoneGlyceraldehydeBiochemistrychemistry.chemical_compoundHypocreaGlyceraldehydeGlycerolCloning MolecularMolecular BiologyTrichoderma reeseichemistry.chemical_classificationbiologyGlycerol dehydrogenaseGlyceraldehyde-3-Phosphate DehydrogenasesHypocrea jecorinaCell Biologybiology.organism_classificationRecombinant ProteinsL-glyceraldehydeEnzymeGlycerol-3-phosphate dehydrogenasechemistryBiochemistryDihydroxyacetoneGlycerol dehydrogenaseNADP-specific glycerol dehydrogenaseNADPSugar Alcohol DehydrogenasesFEBS Journal
researchProduct

Free [NADH]/[NAD+] regulates sirtuin expression

2011

Sirtuins are deacetylases involved in metabolic regulation and longevity. Our aim was to test the hypothesis that they are subjected to redox regulation by the [NADH]/[NAD(+)] ratio. We used NIH3T3 fibroblasts in culture, Drosophila fed with or without ethanol and exercising rats. In all three models an increase in [NADH]/[NAD(+)] came up with an increased expression of sirtuin mRNA and protein. PGC-1α (a substrate of sirtuins) protein level was significantly increased in fibroblasts incubated with lactate and pyruvate but this effect was lost in fibroblasts obtained from sirtuin-deficient mice. We conclude that the expression of sirtuins is subject to tight redox regulation by the [NADH]/[…

MaleMetaboliteBiophysicsBiochemistryMicechemistry.chemical_compoundPhysical Conditioning AnimalPyruvic AcidAnimalsSirtuinsLactic AcidRNA MessengerRats WistarEthanol metabolismMolecular BiologyCells CulturedGlyceraldehyde 3-phosphate dehydrogenaseRegulation of gene expressionMessenger RNAEthanolbiologyFibroblastsNADPeroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alphaRatsCell biologyDrosophila melanogasterGlycerol-3-phosphate dehydrogenaseGene Expression RegulationchemistryBiochemistrySirtuinNIH 3T3 CellsTrans-Activatorsbiology.proteinNAD+ kinaseOxidation-ReductionTranscription FactorsArchives of Biochemistry and Biophysics
researchProduct

The Lsm1-7/Pat1 complex binds to stress-activated mRNAs and modulates the response to hyperosmotic shock.

2018

RNA-binding proteins (RBPs) establish the cellular fate of a transcript, but an understanding of these processes has been limited by a lack of identified specific interactions between RNA and protein molecules. Using MS2 RNA tagging, we have purified proteins associated with individual mRNA species induced by osmotic stress, STL1 and GPD1. We found members of the Lsm1-7/Pat1 RBP complex to preferentially bind these mRNAs, relative to the non-stress induced mRNAs, HYP2 and ASH1. To assess the functional importance, we mutated components of the Lsm1-7/Pat1 RBP complex and analyzed the impact on expression of osmostress gene products. We observed a defect in global translation inhibition under…

Saccharomyces cerevisiae Proteinslcsh:QH426-470Gene ExpressionSaccharomyces cerevisiaeBiochemistryOsmotic PressureOsmotic ShockGeneticsRNA MessengerCellular Stress ResponsesGlycerol-3-Phosphate Dehydrogenase (NAD+)Biology and life sciencesMessenger RNAMembrane Transport ProteinsRNA-Binding ProteinsProteinsCell BiologyRepressor ProteinsNucleic acidslcsh:GeneticsRibonucleoproteinsRNA Cap-Binding ProteinsCell ProcessesProtein BiosynthesisPolyribosomesRNAProtein TranslationCellular Structures and OrganellesRibosomesProtein BindingResearch ArticlePLoS genetics
researchProduct

Kinetic and functional characterization of a membrane-bound NAD(P)H dehydrogenase located in the chloroplasts of Pleurochloris meiringensis (Xanthoph…

1996

Using isolated chloroplasts or purified thylakoids from photoautotrophically grown cells of the chromophytic alga Pleurochloris meiringensis (Xanthophyceae) we were able to demonstrate a membrane bound NAD(P)H dehydrogenase activity. NAD(P)H oxidation was detectable with menadione, coenzyme Q0, decylplastoquinone and decylubiquinone as acceptors in an in vitro assay. K m-values for both pyridine nucleotides were in the μmolar range (K m[NADH]=9.8 μM, K m[NADPH]=3.2 μM calculated according to Lineweaver-Burk). NADH oxidation was optimal at pH 9 while pH dependence of NADPH oxidation showed a main peak at 9.8 and a smaller optimum at pH 7.5-8. NADH oxidation could be completely inhibited with…

chemistry.chemical_classificationDehydrogenaseCell BiologyPlant ScienceGeneral MedicineBiologyNADPH oxidationBiochemistryCofactorNAD(P)H dehydrogenaseGlycerol-3-phosphate dehydrogenaseBiochemistrychemistryOxidoreductasebiology.proteinNAD+ kinaseFerredoxinPhotosynthesis Research
researchProduct